Resolución de colisiones Hash

Clasificación de los métodos:

- Reasignación
- Arreglos anidados
- Encadenamiento

Reasignación de direcciones H(K)=d

- Prueba lineal
- d, d+1, d+2, d+3, d+4, ...,d+i
- Prueba cuadrática
- d, d+1, d+4, d+9, d+16, ...,d+i²

Doble direccionamiento hash

Variante 1:d, d+d', d+2d', d+3d', ...,d+id'

Variante 2:H(K),H(d),H(d'),H(d''),......

Consideraciones:

- La estructura de datos para almacenar las claves originales según la dirección o índice generado por la función Hash, debe de implementarse cómo una estructura circular.
- Si existe colisión y la nueva dirección generada es mayor que el número de índices o direcciones disponibles (n), la dirección o índice se reinicializa en 1 (limite inferior de la estructura, d=1,dx=1) y se vuelve a realizar desde el principio la resolución de la colisión (i=0). Es decir, se da la vuelta a la estructura y la dirección que es base para el calculo de la nueva dirección es cambiada al limite inferior de la estructura.

Ejemplo Prueba Lineal:

Estructura		Direcciones gen	eradas:
1	88	K	H(K)
2	79	25	6
3		43	4
4	43	56	7
5	54	35	6
6	25	54	5
7	56	13	4
8	35	104	5
9	13	88	9
10	104	79	10

Ejemplo Prueba Cuadrática:

Solución de colisiones:

1	Estructura	Direcciones g	Direcciones generadas:		K	d	i ²	dx
1	85	K	H(K)	(35	6	1 ² =1	7
							$2^2 = 4$	10
2	79	25	6		13	4	1 ² =1	5
3		43	4				2 ² =4	8
4	43	56	7	1	04	5	1 ² =1	6
5	54	25	6				2 ² =4	9
5	54	35	O	8	35	6	1 ² =1	7
6	25	54	5				2 ² =4	10
7	56	13	4		Vue	lta	3 ² =9	15
8	13	104	5			1	0 ² =0	1
^	404	0.5	0	7	79	10	1 ² =1	11
9	104	85	6			1	02=0	1
10	35	79	10				1 ² =1	2

Ejemplo Doble Dirección Hash (variante 1):

Direcciones generadas:

5

6

H(K)=(K mod 10)+1 $H'(K)=\text{digito2}(K^2)+1$

35

Estructura

Solución de colisiones:

1	13	K	H(K)	H´(K)
2	85	25	6	-
3	104	43	4	-
4	43	56	7	-
5	54	35	6	3
6	25	54	5	-
7	56	13	4	7

104

85

K	d	ď'	d+d'	d+2d'	d+3d'	d+4d'
35	6	3	9	-	-	
13	4	7	11=1	-	-	
104	5	2	7	9	11=1	13=3
85	6	3	9	12=2		

8

9

Ejemplo Doble Dirección Hash (variante 1):

Direcciones generadas:

 $H(K)=(K \mod 10)+1$ $H'(K)=(K \mod 5)+1$

Estructura

		2000.0	moo go.	ioraaaor
1		K	H(K)	H´(K)
2	13	25	6	-
3		43	4	-
4	43	56	7	-
5	54	35	6	1
6	25	54	5	-
7	56	13	4	4
8	35	104	5	5
9	85	85	6	1
10	104			

Solución de colisiones:

K	d	ď'	d+d'	d+2d'	d+3d'	d+4d'
35	6	1	7	8	-	
13	4	4	8	12=2	-	
104	5	5	10	-	-	-
85	6	1	7	8	9	-

Ejemplo Doble Dirección Hash (variante 2):

Primer Función H(K)=(K mod 10)+1 Segunda Función H(d)=digitomassignificativo(d²)

Estructura			Direcciones generadas:				
1	13	K	H(K)	H(d)	H(d´)	H(d´´)	
2	104	25	6	11(4)	11(0)	11(a)	
3	35	43	4				
4	43	56	7				
5	54	35	6	3			
6	25	54	5				
7	56	13	4	1			
	00	104	5	2			
8		85	6	3	9		
9	85						
10							

Encadenamiento H(K)=(k%10)+1

43->13 54->104 25->35

Direcciones generadas:

K	H(K)
25	6
43	4
56	7
35	6
54	5
13	4
104	5
88	9
79	10